Compare commits

..

10 Commits

Author SHA1 Message Date
2cc03b5136 imported constants in hmatrix and smatrix 2023-10-13 17:04:19 +08:00
5ad185e130 added benchmark 2023-10-08 08:38:10 +08:00
88574a8b5b added missing constants 2023-10-07 09:00:05 +08:00
b8f704285c added unit tests for bigint 2023-05-29 08:43:09 +08:00
42dbf1103d added BigInteger parse function 2023-05-28 20:02:00 +08:00
a219460d20 added bigint library 2023-05-28 13:53:28 +08:00
1e580cd6da added rational numbers 2023-05-24 22:47:16 +08:00
d4f64d25a0 added mixed SVector/scalar arithmetic operations 2019-01-07 23:27:56 +00:00
Walter Oggioni
6aee03eac6 added vector/matrix product 2019-01-03 17:38:24 +01:00
Walter Oggioni
cd6ca6f3ec Several improvements:
- added some meaningful unit tests
- splitted classes into heap-allocated (starting with 'H') and stack-allocated (starting with 'S'), unfortunately there is a lot of duplicated code but I am still unable to find
an elegant solution to use the smae code to deal with both the stack-allocated class and the heap-allocated one
2018-12-31 01:36:45 +01:00
20 changed files with 1822 additions and 584 deletions

33
benchmark/benchmark.nim Normal file
View File

@@ -0,0 +1,33 @@
import std/random
import std/os
import std/parseutils
from mmath/rational import Rational, newRational, `$`, zero, abs, `<`, `*`, `-`, `/=`, `+`, `+=`
from mmath/hmatrix import newHMatrix, clone, lup, lu_solve, `*`, `-`, `$`
from mmath/hvector import newHvector, `-`, norm
from mmath/bigint import BigInt, newBigInt, `of`, one, zero, abs, `*`, `mod`, `div`, `-`, `+`, `$`, `==`
let argv = commandLineParams()
let size = block:
var n : int = 0
if argv.len() > 0:
discard parseInt(argv[0], n)
else:
n = 3
n
proc nextInt(r : var Rand, min : int, max : int) : int = min + r.rand(max - min)
var rand = initRand(101325)
let mtx = block:
let valueGenerator = proc(i : int, j : int): Rational[BigInt] =
return newRational[BigInt](BigInt.of(rand.nextInt(-1000 * size, 1000 * size).int64), BigInt.of((1000 * size).int64))
newHMatrix[Rational[BigInt]](size, size, valueGenerator)
var lu = mtx.clone()
let pivot = lu.lup()
let b = block:
let generator = proc(i : int) : Rational[BigInt] = newRational(BigInt.of(rand.nextInt(0, size)), BigInt.of(size))
newHVector[Rational[BigInt]](size, generator)
let x = lu.lu_solve(b, pivot)
let error = mtx * x - b
echo $norm(error)

1
benchmark/config.nims Normal file
View File

@@ -0,0 +1 @@
switch("path", "$projectDir/../src")

View File

@@ -1,329 +0,0 @@
from sequtils import newSeqWith, map
from utils import `...`, `-->`
from vector import Vector, newVector, createVector
from options import Option, none
import future
from random import randomize, random
type
Matrix*[T] = object
rows, columns : int
data : seq[T]
SMatrix[W, H: static[int], T] =
array[1..W, array[1..H, T]]
Pivot* = ref object
data* : Vector[int]
permutations* : int
SingularMatrixError* = object of ValueError
SizeError* = object of ValueError
MatrixRef[T] = ref Matrix[T]
proc `[]`(p : Pivot, index : int) : int = p.data[index]
proc `[]=`(p : var Pivot, index : int, value : int) = p.data[index] = value
proc len(p : Pivot) : int = p.data.len
proc newPivot[T](size : int) : Pivot =
result = new (Pivot)
result = Pivot(data: newVector[int](size), permutations:0)
for i in 0...size:
result[i] = i
type AbtractMAtrix = Matrix or SMAtrix
iterator iter_walter[T](m: Matrix[T]) : (int,int, T) {.closure.} =
for i in 0...m.rows:
for j in 0...m.columns:
yield (i, j, m[i,j])
iterator items*[T](m: Matrix[T]): (int,int, T) =
for i in 0...m.rows:
for j in 0...m.columns:
yield (i, j, m[i,j])
proc size*[T](m : Matrix[T]) : (int, int) = (m.rows, m.columns)
proc newMatrix*[T](rows, columns : int, init : T = 0) : Matrix[T] =
result = Matrix[T](rows: rows, columns:columns, data: newSeq[T](rows * columns))
for i,j,_ in items(result):
result[i,j] = init
proc newMatrix*[T](rows, columns : int, values : openarray[T]) : Matrix[T] =
result = Matrix[T](rows: rows, columns:columns, data: newSeq[T](rows * columns))
for i,j,_ in items(result):
result[i,j] = values[i * columns + j]
proc identity*[T](sz : int) : Matrix[T] =
result = newMatrix[T](sz,sz,0)
for i in 0...sz:
result[i,i] = 1
proc `[]`*[T](m : Matrix[T], r,c :int) : T =
m.data[r*m.columns + c]
proc `[]`*[T](m : var Matrix[T], r,c :int) : var T =
m.data[r*m.columns + c]
proc `[]=`*[T](m : var Matrix[T], r,c :int, newValue : T) =
m.data[r*m.columns + c] = newValue
# proc `[]=`*[T](m : var Matrix[T], r,c :int, newValue : T) =
# m.data[r*m.columns + c] = newValue
proc `$`*[T](m : Matrix[T]) : string =
result = "["
for i,j,v in items(m):
if j == 0:
if i > 0: result &= " "
result &= "["
result &= $v
if j == (m.columns - 1):
result &= "]"
if i != (m.rows - 1):
result &= ",\n"
else:
result &= "]\n"
else: result &= ", "
proc `*`*[T](m1 : Matrix[T], m2 : Matrix[T]) : Matrix[T] =
result = newMatrix[T](m1.rows, m2.columns, 0)
for i in 0...result.rows:
for j in 0...result.columns:
for k in 0...m1.columns:
result[i, j] = result[i, j] + m1[i, k] * m2[k, j]
proc `*`*[T](m1 : Matrix[T], v2 : Vector[T]) : Vector[T] =
result = newVector[T](m1.rows, 0)
for i in 0...m1.rows:
for j in 0...m1.columns:
result[i] = result[i] + m1[i, j] * v2[j]
proc `+`*[T](m1 : Matrix[T], m2 : Matrix[T]) : Matrix[T] =
result = newMatrix[T](m1.rows, m1.columns)
for i in 0...m1.rows:
for j in 0...m1.columns:
result[i,j] = m1[i,j] + m2[i,j]
proc `+`*[T](m1 : Matrix[T], v : T) : Matrix[T] =
result = newMatrix[T](m1.rows, m1.columns)
for i in 0...m1.rows:
for j in 0...m1.columns:
result[i,j] = m1[i,j] + v
proc `-`*[T](m1 : Matrix[T], m2 : Matrix[T]) : Matrix[T] =
result = newMatrix[T](m1.rows, m2.columns)
for i in 0...m1.rows:
for j in 0...m1.columns:
result[i,j] = m1[i,j] - m2[i,j]
proc `-`*[T](m1 : Matrix[T], v : T) : Matrix[T] =
result = newMatrix[T](m1.rows, m1.columns)
for i in 0...m1.rows:
for j in 0...m1.columns:
result[i,j] = m1[i,j] - v
proc `+=`*[T](m1 : var Matrix[T], m2 : Matrix[T]) =
for i in 0...m1.rows:
for j in 0...m1.columns:
m1[i,j] += m2[i,j]
proc `+=`*[T](m1 : var Matrix[T], v : T) : Matrix[T] =
for i in 0...m1.rows:
for j in 0...m1.columns:
m1[i,j] += v
proc `-=`*[T](m1 : var Matrix[T], v : T) : Matrix[T] =
for i in 0...m1.rows:
for j in 0...m1.columns:
m1[i,j] -= v
proc `-=`*[T](m1 : var Matrix[T], m2 : Matrix[T]) =
for i in 0...m1.rows:
for j in 0...m1.columns:
m1[i,j] -= m2[i,j]
proc `-`*[T](m : Matrix[T]) : Matrix[T] =
result = newMatrix[T](m.rows, m.columns)
for i,j,v in m:
result[i,j] = -v
proc `==`*[T](m1 : Matrix[T], m2 : Matrix[T]) : bool =
if m1.size() != m2.size():
return false
for i in 0...m1.rows:
for j in 0...m1.columns:
if m1[i,j] != m2[i,j]:
return false
return true
proc clone*[T](m : Matrix[T]) : Matrix[T] = newMatrix[T](m.rows, m.columns, m.data)
proc transpose*[T](m : Matrix[T]) : Matrix[T] =
result = newMatrix[T](m.rows, m.columns)
for i, j, v in m:
result[j, i] = v
proc det*[T](m : Matrix[T]) : T =
var clone = m.clone()
clone.gauss_jordan_low()
result = 1
for i in 0...clone.rows:
result *= clone[i, i]
proc swap_rows[T](m : var Matrix[T], id1 : int, id2 : int, pivot : Pivot=nil, other : MatrixRef[T]=nil) =
for i in 0...m.columns:
let tmp = m[id1, i]
m[id1, i] = m[id2, i]
m[id2, i] = tmp
if other != nil:
other[].swap_rows(id1, id2)
if pivot != nil:
var pv = pivot
let tmp = pv[id1]
pv[id1] = pv[id2]
pv[id2] = tmp
pv.permutations = pv.permutations + 1
proc add_row[T](m : var Matrix[T], sourceIndex : int, destIndex : int, factor : T, other : MatrixRef[T]=nil) =
for i in 0...m.columns:
m[destIndex, i] = m[destIndex, i] + m[sourceIndex, i] * factor
if other != nil:
other[].add_row(sourceIndex, destIndex, factor)
proc gauss_jordan_low*[T](m : var Matrix[T], other : MatrixRef[T]=nil) =
var pivot = newPivot[T](m.rows)
for i in 0...m.rows:
if m[i, i] == 0:
for j in (i + 1)...m.columns:
if m[j, i] != 0:
m.swap_rows(i, j, pivot, other)
break
for j in (i + 1)...m.rows:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor, other)
proc gauss_jordan_high*[T](m : var Matrix[T], other : MatrixRef[T]=nil) =
var pivot = newPivot[T](m.rows)
for i in m.rows-->0:
if m[i, i] == 0:
for j in i-->0:
if m[j, i] != 0:
m.swap_rows(i, j, pivot, other)
break
for j in i-->0:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor, other)
proc invert*[T](m : Matrix[T]) : Matrix[T] =
var tmp = m.clone()
var res = new(MatrixRef[T])
res[] = identity[T](tmp.rows)
tmp.gauss_jordan_low(res)
tmp.gauss_jordan_high(res)
for i in 0...res.rows:
let f = tmp[i, i]
for j in 0...res.columns:
res[][i, j] /= f
res[]
proc triu*[T](m : Matrix[T], diag_replace=nil) : Matrix[T] =
result = Matrix(m.rows, m.columns, 0)
for i in range(m.rows):
for j in range(i, m.columns):
if diag_replace and i == j:
result[i, j] = diag_replace
else:
result[i, j] = m[i, j]
proc tril*[T](m : Matrix[T], diag_replace=nil) : Matrix[T] =
result = Matrix(m.rows, m.columns, 0)
for i in range(m.rows):
for j in range(i + 1):
if diag_replace and i == j:
result[i, j] = diag_replace
else:
result[i, j] = m[i, j]
proc lu_row[T](m : var Matrix[T], i : int) =
if m[i, i] == 0:
raise newException(SingularMatrixError, "Matrix is singular")
for j in i...m.columns:
for k in 0...i:
m[i, j] = m[i, j] - m[i, k] * m[k, j]
for j in (i + 1)...m.columns:
for k in 0...i:
m[j, i] = m[j, i] - m[j, k] * m[k, i]
m[j, i] = m[j, i] / m[i, i]
proc lu_pivot[T](m : var Matrix[T], i : int, pivot : Pivot) =
var max = abs(m[i, i])
var max_index = i
for j in (i + 1)...m.rows:
if abs(m[j, i]) > max:
max = abs(m[i, j])
max_index = j
if max_index != i:
m.swap_rows(i, max_index, pivot)
proc lu*[T](m : var Matrix[T], pivoting=true) : Pivot =
var pivot = newPivot[T](m.rows)
if pivoting:
for i in 0...m.rows:
m.lu_pivot(i, pivot)
m.lu_row(i)
else:
for i in 0...m.rows:
m.lu_row(i)
return pivot
proc lu_solve*[T](m : Matrix[T], b : Vector[T], p : Pivot = nil) : Vector[T] =
var pivot = p
if pivot == nil:
pivot = new(Pivot)
pivot = newPivot[T](m.rows)
var x = newVector[T](m.rows)
for i in 0...m.rows:
x[i] = b[pivot[i]]
for k in 0...i:
x[i] = x[i] - m[i, k] * x[k]
for i in m.rows-->0:
for k in (i + 1)...m.rows:
x[i] = x[i] - m[i, k] * x[k]
x[i] = x[i] / m[i, i]
return x
proc lu_invert*[T](m : Matrix[T], pivot : Pivot=nil) : Matrix[T] =
if not pivot:
pivot = newPivot[T](m.rows)
result = newMatrix[T](m.rows, m.columns)
for i in 0...m.rows:
for j in 0...m.rows:
if pivot[j] == i:
result[j, i] = 1
else:
result[j, i] = 0
for k in range(j):
result[j, i] -= m[j, k] * result[k, i]
for j in m.rows-->0:
for k in range(j + 1, m.rows):
result[j, i] -= m[j, k] * result[k, i]
result[j, i] = result[j, i] / m[j, j]
proc lu_det*[T](m : Matrix[T], pivot : Pivot=nil) : T =
if not pivot:
pivot = newPivot[T](m.rows)
result = 1
for i in 0...m.rows:
result *= m[i, i]
if pivot.permutations mod 2 != 0:
result *= -1
proc from_pivot[T](pivot : Pivot): Matrix[T] =
result = Matrix(len(pivot), len(pivot))
for i in 0...pivot.len:
result[pivot[i], i] = 1
# result[j, i] = 1

View File

@@ -1,183 +0,0 @@
from random import randomize, random
from utils import `...`
import matrix
from matrix import det
from vector import createVector, newVector, `-`, abs, norm
import unittest
suite "Nim linear algebra library":
echo "suite setup: run once before the tests"
randomize()
var mtx : Matrix[float64]
setup:
echo "run before each test"
let DIM = 100
var numbers = newSeq[float64](DIM * DIM)
for i in 0...len(numbers):
numbers[i] = float64(random(-DIM..DIM))
mtx = newMatrix[float64](DIM,DIM,numbers)
teardown:
echo "run after each test"
test "LU decomposition":
var lu = mtx.clone()
let pivot = lu.lu()
test "Linear system solve":
# let nums = [2.0,1.0,3.0,2.0,6.0,8.0,6.0,8.0,18.0]
# let nums = [-3.0, -1.0, 0.0, -2.0, 0.0, 2.0, -3.0, -1.0, 0.0]
let DIM = 100
var numbers = newSeq[float64](DIM * DIM)
for i in 0...len(numbers):
numbers[i] = float64(random(-DIM..DIM))
var mtx = newMatrix[float64](DIM,DIM,numbers)
var lu = mtx.clone()
let pivot = lu.lu()
var b = newVector[float64](DIM)
for i in 0...len(b):
b[i] = float64(random(DIM))
let x = lu.lu_solve(b, pivot)
let error = (mtx * x) - b
check(error.norm() < 1e-5)
# var mtx2 = mtx.clone
# for i in 0...10000:
# var add = random(-DIM..DIM).float64()
# discard mtx2 += add
# echo mtx
# mtx[1,1] += 10000.0
# echo mtx
# echo mtx.det()
# echo lu
# give up and stop if this fails
echo "suite teardown: run once after the tests"
# let m1 = newMatrix[float](3,3,[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0])
# var m2 = m1.clone()
# let m3 = m2.clone()
# m2[2,1] = -25
# echo m1 + m2
# echo m2
# echo m1.det()
# let nums = [-63, 3, 70, -23, 55,
# -100, -37, 81, -98, 84,
# -36, -45, -70, 98, -18,
# -15, 92, 82, 85, -2,
# 45, 54, -22, 27, 0
# ]
# let s = nums.map(proc(n : int) : float = float(n))
# let s2 = nums.map(n => float(n))
# let m4 = newMatrix[float](5,5,s)
# echo m4
# echo m4.det
# var m5 = m4.clone()
# var pivot = m5.lu()
# let b = createVector[float](1.0,2.0,3.0,4.0,5.0)
# let x = m5.lu_solve(b, pivot)
# echo x
# proc new(T: typedesc): ref T =
# echo "allocating "
# new(result)
# var n = new Vector[int]
# type
# Index = distinct int
# proc `==` (a, b: Index): bool {.borrow.}
# var af = (0, 0.Index)
# var b = (0, 0.Index)
# echo af == b # works!
# type Person = ref object of RootObj
# name : string
# age : int
# type Employee = ref object of Person
# salary: int
# type RecordType = tuple or object
# proc printFields(rec: RecordType) =
# for key, value in fieldPairs(rec):
# echo key, " = ", value
# proc printFields(rec: ref[RecordType]) =
# for key, value in fieldPairs(rec[]):
# echo key, " = ", value
# let p = Person(name : "Walter", age : 28)
# let e = Employee(name : "Walter", age : 28, salary: 45000)
# let people : seq[Person] = @[p, e]
# for person in people:
# printFields person
# let DIM = 5
# var numbers = newSeq[float](DIM * DIM)
# for i in 0...len(numbers):
# numbers[i] = float(random(DIM))
# let m = newMatrix[float](DIM,DIM, numbers)
# var m2 = new(Matrix[float])
# m2[] = m.clone()
# echo m2[]
# m2[][0,0] = 300
# echo m2[]
# let inverse = m2[].invert()
# echo m
# echo m.det
# echo m * inverse
# echo inverse * m
# let nums = [2.0,1.0,3.0,2.0,6.0,8.0,6.0,8.0,18.0]
# let nums = [-3.0, -1.0, 0.0, -2.0, 0.0, 2.0, -3.0, -1.0, 0.0]
# let DIM = 600
# var numbers = newSeq[float64](DIM * DIM)
# for i in 0...len(numbers):
# numbers[i] = float64(random(-DIM..DIM))
# var mtx = newMatrix[float64](DIM,DIM,numbers)
# var mtx2 = mtx.clone
# for i in 0...10000:
# var add = random(-DIM..DIM).float64()
# discard mtx2 += add
# echo mtx
# mtx[1,1] += 10000.0
# echo mtx
# echo mtx.det()
# var lu = mtx.clone()
# let pivot = lu.lu()
# # echo lu
# var b = newVector[float64](DIM)
# for i in 0...len(b):
# b[i] = float64(random(DIM))
# let x = lu.lu_solve(b, pivot)
# let error = (mtx * x) - b
# echo abs(error)

13
mmath.nimble Normal file
View File

@@ -0,0 +1,13 @@
# Package
version = "0.1.0"
author = "Walter Oggioni"
description = "Small linear algebra library"
license = "MIT"
srcDir = "src"
# Dependencies
requires "nim >= 0.18"
requires "nwo >= 0.1"

265
src/mmath/bigint.nim Normal file
View File

@@ -0,0 +1,265 @@
from error import ParseError
import nwo/clib
type mpz_t = object
mp_alloc : cint
mp_size : cint
mp_d : pointer
type mpz_ptr = ptr[mpz_t]
cxface:
include "<gmp.h>"
proc mpz_init(state : mpz_ptr) : void
proc mpz_clear(state : mpz_ptr) : void
proc mpz_set_si(self : mpz_ptr, value : clong) : void
proc mpz_get_str(destination : cstring, base : cint, self : mpz_ptr) : cstring
proc mpz_sizeinbase(self : mpz_ptr, base :cint) : csize_t
proc mpz_set_str(self : mpz_ptr, std: cstring, base : cint) : int
proc mpz_add(rop : mpz_ptr, op1 : mpz_ptr, op2 : mpz_ptr) : void
proc mpz_add_ui(rop : mpz_ptr, op1 : mpz_ptr, op2 : culong) : void
proc mpz_sub(rop : mpz_ptr, op1 : mpz_ptr, op2 : mpz_ptr) : void
proc mpz_sub_ui(rop : mpz_ptr, op : mpz_ptr, op2 : culong) : void
proc mpz_ui_sub(rop : mpz_ptr, op2 : culong, op : mpz_ptr) : void
proc mpz_mul(rop : mpz_ptr, op1 : mpz_ptr, op2 : mpz_ptr) : void
proc mpz_mul_si(rop : mpz_ptr, op1 : mpz_ptr, op2 : clong) : void
proc mpz_mul_ui(rop : mpz_ptr, op1 : mpz_ptr, op2 : culong) : void
proc mpz_cdiv_q(q : mpz_ptr, n : mpz_ptr, d : mpz_ptr) : void
proc mpz_cdiv_r(r : mpz_ptr, n : mpz_ptr, d : mpz_ptr) : void
proc mpz_fdiv_q(q : mpz_ptr, n : mpz_ptr, d : mpz_ptr) : void
proc mpz_fdiv_r(r : mpz_ptr, n : mpz_ptr, d : mpz_ptr) : void
proc mpz_tdiv_q(q : mpz_ptr, n : mpz_ptr, d : mpz_ptr) : void
proc mpz_tdiv_r(r : mpz_ptr, n : mpz_ptr, d : mpz_ptr) : void
proc mpz_tdiv_q_ui(q : mpz_ptr, n : mpz_ptr, d : culong) : void
proc mpz_tdiv_r_ui(q : mpz_ptr, n : mpz_ptr, d : culong) : void
proc mpz_tdiv_ui(n : mpz_ptr, d : culong) : void
proc mpz_neg(rop : mpz_ptr, op : mpz_ptr) : void
proc mpz_root(rop : mpz_ptr, op1: mpz_ptr, op2: culong) : int
proc mpz_sqrt(rop : mpz_ptr, op1: mpz_ptr) : void
proc mpz_pow_ui(rop : mpz_ptr, base: mpz_ptr, exp : culong) : void
proc mpz_abs(rop : mpz_ptr, op : mpz_ptr) : void
proc mpz_cmp(op1 : mpz_ptr, op2 : mpz_ptr) : cint
libs:
gmp
proc `=destroy`*(n: mpz_t) =
let mpz : mpz_ptr = addr(n)
mpz_clear(mpz)
type BigInt* = ref mpz_t
proc newBigInt*(value : int64): BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
mpz_init(mpz)
mpz_set_si(mpz, value.clong)
proc toString*(n : BigInt, base : cint) : string =
let mpz : mpz_ptr = addr(n[])
let size = mpz_sizeinbase(mpz, base.cint)
let space : cstring = cast[cstring](alloc(size))
discard mpz_get_str(space, base, mpz)
result = $space
dealloc(space)
proc fromString*(t : type[BigInt], s : string, base : int = 10) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let rc = mpz_set_str(mpz, s, base.cint)
if rc != 0:
raise newException(ParseError, "Cannot parse integer with base " & $base & " from string " & "'" & s & "'")
proc `$`*(n : BigInt) : string = toString(n, 10)
proc `+`*(n1 : BigInt, n2 : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_init(mpz)
mpz_add(mpz, mpz1, mpz2)
proc `+`*(n1 : BigInt, n2 : culong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
mpz_init(mpz)
mpz_add_ui(mpz, mpz1, n2.culong)
proc `+`*(n1 : culong, n2 : BigInt) : BigInt = n2 + n1
proc `-`*(n1 : BigInt, n2 : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_init(mpz)
mpz_sub(mpz, mpz1, mpz2)
proc `-`*(n1 : BigInt, n2 : culong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
mpz_init(mpz)
mpz_sub_ui(mpz, mpz1, n2)
proc `-`*(n1 : culong, n2 : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_init(mpz)
mpz_ui_sub(mpz, n1, mpz2)
proc `*`*(n1 : BigInt, n2 : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_init(mpz)
mpz_mul(mpz, mpz1, mpz2)
proc `*`*(n1 : BigInt, n2 : clong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
mpz_init(mpz)
mpz_mul_si(mpz, mpz1, n2)
proc `*`*(n1 : clong, n2 : BigInt) : BigInt = n2 * n1
proc `*`*(n1 : BigInt, n2 : culong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
mpz_init(mpz)
mpz_mul_ui(mpz, mpz1, n2)
proc `*`*(n1 : culong, n2 : BigInt) : BigInt = n2 * n1
proc `div`*(n1 : BigInt, n2 : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_init(mpz)
mpz_tdiv_q(mpz, mpz1, mpz2)
proc `div`*(n1 : BigInt, n2 : culong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
mpz_init(mpz)
mpz_tdiv_q_ui(mpz, mpz1, n2)
proc `mod`*(n1 : BigInt, n2 : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_init(mpz)
mpz_tdiv_r(mpz, mpz1, mpz2)
proc `mod`*(n1 : BigInt, n2 : culong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n1[])
mpz_init(mpz)
mpz_tdiv_r_ui(mpz, mpz1, n2)
proc `-`*(m : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(m[])
mpz_neg(mpz, mpz1)
proc `+=`*(n1 : var BigInt, n2 : BigInt) : void =
let mpz : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_add(mpz, mpz, mpz2)
proc `+=`*(n1 : var BigInt, n2 : culong) : void =
let mpz : mpz_ptr = addr(n1[])
mpz_add_ui(mpz, mpz, n2)
proc `-=`*(n1 : var BigInt, n2 : BigInt) : void =
let mpz : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_sub(mpz, mpz, mpz2)
proc `-=`*(n1 : var BigInt, n2 : culong) : void =
let mpz : mpz_ptr = addr(n1[])
mpz_sub_ui(mpz, mpz, n2)
proc `*=`*(n1 : var BigInt, n2 : BigInt) : void =
let mpz : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_mul(mpz, mpz, mpz2)
proc `*=`*(n1 : var BigInt, n2 : clong) : void =
let mpz : mpz_ptr = addr(n1[])
mpz_mul_si(mpz, mpz, n2)
proc `*=`*(n1 : var BigInt, n2 : culong) : void =
let mpz : mpz_ptr = addr(n1[])
mpz_mul_ui(mpz, mpz, n2)
proc `div=`*(n1 : var BigInt, n2 : BigInt) : void =
let mpz : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_tdiv_q(mpz, mpz, mpz2)
proc `div=`*(n1 : var BigInt, n2 : culong) : void =
let mpz : mpz_ptr = addr(n1[])
mpz_tdiv_q_ui(mpz, mpz, n2)
proc abs*(n : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n[])
mpz_abs(mpz, mpz1)
proc sqrt*(n : BigInt) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n[])
mpz_sqrt(mpz, mpz1)
proc pow*(n : BigInt, exp : culong) : BigInt =
new(result)
let mpz : mpz_ptr = addr(result[])
let mpz1 : mpz_ptr = addr(n[])
mpz_pow_ui(mpz, mpz1, exp)
proc fact*(n : int) : BigInt =
result = newBigInt(1)
for i in 1..<n:
result *= i
let ZERO = newBigInt(0)
let ONE = newBigInt(1)
proc one*[BigInt](_: type[BigInt]) : BigInt = ONE
proc zero*[BigInt](_: type[BigInt]) : BigInt = ZERO
proc cmp*(n1 : BigInt, n2 : BigInt) : int =
let mpz1 : mpz_ptr = addr(n1[])
let mpz2 : mpz_ptr = addr(n2[])
mpz_cmp(mpz1, mpz2).int
proc `<`*(n1 : BigInt, n2 : BigInt) : bool = cmp(n1, n2) < 0
proc `>`*(n1 : BigInt, n2 : BigInt) : bool = cmp(n1, n2) > 0
proc `==`*(n1 : BigInt, n2 : BigInt) : bool = cmp(n1, n2) == 0
proc `<=`*(n1 : BigInt, n2 : BigInt) : bool = cmp(n1, n2) <= 0
proc `>=`*(n1 : BigInt, n2 : BigInt) : bool = cmp(n1, n2) >= 0
proc `!=`*(n1 : BigInt, n2 : BigInt) : bool = cmp(n1, n2) != 0
proc `of`*(_ : typedesc[BigInt], n : int64) : BigInt = newBigInt(n)

39
src/mmath/constant.nim Normal file
View File

@@ -0,0 +1,39 @@
proc one*[T : int64](_: type[T]) : T = 1.T
proc zero*[T : int64](_: type[T]) : T = 0.T
proc one*[T : uint64](_: type[T]) : T = 1.T
proc zero*[T : uint64](_: type[T]) : T = 0.T
proc one*[T : int](_: type[T]) : T = 1.T
proc zero*[T : int](_: type[T]) : T = 0.T
proc one*[T : uint](_: type[T]) : T = 1.T
proc zero*[T : uint](_: type[T]) : T = 0.T
proc one*[T : int16](_: type[T]) : T = 1.T
proc zero*[T : int16](_: type[T]) : T = 0.T
proc one*[T : uint16](_: type[T]) : T = 1.T
proc zero*[T : uint16](_: type[T]) : T = 0.T
proc one*[T : int8](_: type[T]) : T = 1.T
proc zero*[T : int8](_: type[T]) : T = 0.T
proc one*[T : uint8](_: type[T]) : T = 1.T
proc zero*[T : uint8](_: type[T]) : T = 0.T
proc one*[T : float32](_: type[T]) : T = 1.T
proc zero*[T : float32](_: type[T]) : T = 0.T
proc one*[T : float64](_: type[T]) : T = 1.T
proc zero*[T : float64](_: type[T]) : T = 0.T

4
src/mmath/error.nim Normal file
View File

@@ -0,0 +1,4 @@
type
SingularMatrixError* = object of ValueError
SizeError* = object of ValueError
ParseError* = object of ValueError

408
src/mmath/hmatrix.nim Normal file
View File

@@ -0,0 +1,408 @@
from nwo/utils import `-->`
from hvector import HVector, newHVector, buildHVector
from pivot import HPivot, newHPivot, `[]`, `[]=`, len
from error import SizeError, SingularMatrixError
from math import sqrt
import constant
type
HMatrix*[T] = object
rows, columns : int
data : seq[T]
proc size*[T](m : HMatrix[T]) : (int, int) = (m.rows, m.columns)
proc `[]`*[T](m : HMatrix[T], r, c :int) : T =
m.data[r * m.columns + c]
proc `[]`*[T](m : var HMatrix[T], r, c :int) : var T =
m.data[r * m.columns + c]
proc `[]=`*[T](m : var HMatrix[T], r, c :int, newValue : T) =
m.data[r * m.columns + c] = newValue
iterator items*[T](m: HMatrix[T]): (int, int, T) =
for i in 0..<m.rows:
for j in 0..<m.columns:
yield (i, j, m[i, j])
proc rawHMatrix[T](rows, columns : int) : HMatrix[T] =
HMatrix[T](rows: rows, columns:columns, data: newSeq[T](rows * columns))
proc newHMatrix*[T](rows, columns : int, init : proc(i : int, j: int) : T) : HMatrix[T] =
result = rawHMatrix[T](rows, columns)
for i in 0..<rows:
for j in 0..<columns:
result[i,j] = init(i,j)
proc newHMatrix*[T](rows, columns : int, init : T = T.zero) : HMatrix[T] =
result = rawHMatrix[T](rows, columns)
for i,j,_ in items(result):
result[i,j] = init
proc newHMatrix*[T](rows, columns : int, values : openarray[T]) : HMatrix[T] =
result = rawHMatrix[T](rows, columns)
for i, j, _ in items(result):
result[i,j] = values[i * columns + j]
proc identity*[T](sz : int) : HMatrix[T] =
let init = proc(i : int, j: int) : T =
if i == j:
result = T.one
else:
result = T.zero
result = newHMatrix[T](sz, sz, init)
proc `$`*[T](m : HMatrix[T]) : string =
result = "["
for i,j,v in items(m):
if j == 0:
if i > 0: result &= " "
result &= "["
result &= $v
if j == (m.columns - 1):
result &= "]"
if i != (m.rows - 1):
result &= ",\n"
else:
result &= "]\n"
else: result &= ", "
proc `*`*[T](m1 : HMatrix[T], m2 : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m1.rows, m2.columns, T.zero)
for i in 0..<result.rows:
for j in 0..<result.columns:
for k in 0..<m1.columns:
result[i, j] = result[i, j] + m1[i, k] * m2[k, j]
proc `*`*[T](m1 : HMatrix[T], v2 : HVector[T]) : HVector[T] =
result = newHVector[T](m1.rows)
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i] = result[i] + m1[i, j] * v2[j]
proc `+`*[T](m1 : HMatrix[T], m2 : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m1.rows, m1.columns)
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] + m2[i,j]
proc `+`*[T](m1 : HMatrix[T], v : T) : HMatrix[T] =
result = newHMatrix[T](m1.rows, m1.columns)
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] + v
proc `-`*[T](m1 : HMatrix[T], m2 : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m1.rows, m2.columns)
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] - m2[i,j]
proc `-`*[T](m1 : HMatrix[T], v : T) : HMatrix[T] =
result = newHMatrix[T](m1.rows, m1.columns)
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] - v
proc `+=`*[T](m1 : var HMatrix[T], m2 : HMatrix[T]) =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] += m2[i,j]
proc `+=`*[T](m1 : var HMatrix[T], v : T) : HMatrix[T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] += v
proc `-=`*[T](m1 : var HMatrix[T], v : T) : HMatrix[T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] -= v
proc `-=`*[T](m1 : var HMatrix[T], m2 : HMatrix[T]) =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] -= m2[i,j]
proc `-`*[T](m : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m.rows, m.columns)
for i,j,v in m:
result[i,j] = -v
proc `==`*[T](m1 : HMatrix[T], m2 : HMatrix[T]) : bool =
if m1.size() != m2.size():
return false
for i in 0..<m1.rows:
for j in 0..<m1.columns:
if m1[i,j] != m2[i,j]:
return false
return true
proc clone*[T](m : HMatrix[T]) : HMatrix[T] = newHMatrix[T](m.rows, m.columns, m.data)
proc transpose*[T](m : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m.columns, m.rows)
for i, j, v in items(m):
result[j, i] = v
proc swap_rows[T](m : var HMatrix[T], id1 : int, id2 : int) =
for i in 0..<m.columns:
let tmp = m[id1, i]
m[id1, i] = m[id2, i]
m[id2, i] = tmp
proc swap_rows[T](m : var HMatrix[T], id1 : int, id2 : int, pivot : var HPivot[T]) =
m.swap_rows(id1, id2)
let tmp = pivot[id1]
pivot[id1] = pivot[id2]
pivot[id2] = tmp
pivot.permutations += 1
proc swap_rows[T](
m : var HMatrix[T], id1 : int,
id2 : int,
pivot : var HPivot[T],
other : var HMatrix[T]) =
m.swap_rows(id1, id2, pivot)
other.swap_rows(id1, id2)
proc add_row[T](
m : var HMatrix[T],
sourceIndex : int,
destIndex : int,
factor : T) =
for i in 0..<m.columns:
m[destIndex, i] = m[destIndex, i] + m[sourceIndex, i] * factor
proc add_row[T](
m : var HMatrix[T],
sourceIndex : int,
destIndex : int,
factor : T,
other : var HMatrix[T]) =
add_row(m, source_index, dest_index, factor)
other.add_row(sourceIndex, destIndex, factor)
proc gauss_jordan_low*[T](
m : var HMatrix[T],
other : var HMatrix[T]) =
var pivot = newHPivot[T](m.rows)
for i in 0..<m.rows:
if m[i, i] == 0:
for j in (i + 1)..<m.columns:
if m[j, i] != 0:
m.swap_rows(i, j, pivot, other)
break
for j in (i + 1)..<m.rows:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor, other)
proc gauss_jordan_low*[T](
m : var HMatrix[T]) =
var pivot = newHPivot[T](m.rows)
for i in 0..<m.rows:
if m[i, i] == 0:
for j in (i + 1)..<m.columns:
if m[j, i] != 0:
m.swap_rows(i, j, pivot)
break
for j in (i + 1)..<m.rows:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor)
proc gauss_jordan_high*[T](
m : var HMatrix[T]) =
var pivot = newHPivot[T]()
for i in m.rows-->0:
if m[i, i] == 0:
for j in i-->0:
if m[j, i] != 0:
m.swap_rows(i, j, pivot)
break
for j in i-->0:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor)
proc gauss_jordan_high*[T](
m : var HMatrix[T],
other : var HMatrix[T]) =
var pivot = newHPivot[T](m.rows)
for i in m.rows-->0:
if m[i, i] == 0:
for j in i-->0:
if m[j, i] != 0:
m.swap_rows(i, j, pivot, other)
break
for j in i-->0:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor, other)
proc det*[T](m : HMatrix[T]) : T =
if m.rows != m.columns:
raise newException(SizeError, "Matrix must be square in order to compute the determinant")
var clone = m.clone()
clone.gauss_jordan_low()
result = T.one
for i in 0..<clone.rows:
result *= clone[i, i]
proc invert*[T](m : HMatrix[T]) : HMatrix[T] =
if m.rows != m.columns:
raise newException(SizeError, "Matrix must be square in order to compute the determinant")
var tmp = m.clone()
result = identity[T](m.rows)
tmp.gauss_jordan_low(result)
tmp.gauss_jordan_high(result)
for i in 0..<result.rows:
let f = tmp[i, i]
for j in 0..<result.columns:
result[i, j] /= f
proc triu*[T](m : HMatrix[T], diag_replace: T) : HMatrix[T] =
result = newHMatrix[T](m.rows, m.columns, T.zero)
for i in 0..<m.rows:
for j in i..<m.columns:
if i == j:
result[i, j] = diag_replace
else:
result[i, j] = m[i, j]
proc triu*[T](m : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m.rows, m.columns, T.zero)
for i in 0..<m.rows:
for j in i..<m.columns:
result[i, j] = m[i, j]
proc tril*[T](m : HMatrix[T], diag_replacement : T) : HMatrix[T] =
result = newHMatrix[T](m.rows, m.columns, T.zero)
for i in 0..<m.rows:
for j in 0..<(i + 1):
if i == j:
result[i, j] = diag_replacement
else:
result[i, j] = m[i, j]
proc tril*[T](m : HMatrix[T]) : HMatrix[T] =
result = newHMatrix[T](m.rows, m.columns, T.zero)
for i in 0..<m.rows:
for j in 0..<(i + 1):
result[i, j] = m[i, j]
proc lu_row[T](m : var HMatrix[T], i : int) =
if m[i, i] == T.zero:
raise newException(SingularMatrixError, "Matrix is singular")
for j in i..<m.columns:
for k in 0..<i:
m[i, j] = m[i, j] - m[i, k] * m[k, j]
for j in (i + 1)..<m.columns:
for k in 0..<i:
m[j, i] = m[j, i] - m[j, k] * m[k, i]
m[j, i] /= m[i, i]
proc lu_pivot[T](m : var HMatrix[T], i : int, pivot : var HPivot[T]) =
var max = abs(m[i, i])
var max_index = i
for j in (i + 1)..<m.rows:
if abs(m[j, i]) > max:
max = abs(m[i, j])
max_index = j
if max_index != i:
m.swap_rows(i, max_index, pivot)
proc lup*[T](m : var HMatrix[T]) : HPivot[T] =
result = newHPivot[T](m.rows)
for i in 0..<m.rows:
m.lu_pivot(i, result)
m.lu_row(i)
proc lu*[T](m : var HMatrix[T]) =
for i in 0..<m.rows:
m.lu_row(i)
proc lu_solve*[T](m : HMatrix[T], b : HVector[T], pivot : HPivot[T]) : HVector[T] =
var x = newHVector[T](m.rows)
for i in 0..<m.rows:
x[i] = b[pivot[i]]
for k in 0..<i:
x[i] = x[i] - m[i, k] * x[k]
for i in m.rows --> 0:
for k in (i + 1)..<m.rows:
x[i] = x[i] - m[i, k] * x[k]
if m[i,i] != T.zero:
x[i] /= m[i, i]
else:
raise newException(SingularMatrixError, "Matrix is singular")
return x
proc lu_solve*[T](
m : HMatrix[T],
b : HVector[T]) : HVector[T] =
var pivot = newHPivot[T]()
lu_solve(m, b, pivot)
proc lu_invert*[T](m : HMatrix[T], pivot : HPivot[T]) : HMatrix[T] =
if m.rows != m.columns:
raise newException(SizeError, "Matrix must be square in order to compute the inverse")
result = newHMatrix[T](m.rows, m.columns)
for i in 0..<m.rows:
for j in 0..<m.rows:
if pivot[j] == i:
result[j, i] = T.one
else:
result[j, i] = T.zero
for k in range(j):
result[j, i] -= m[j, k] * result[k, i]
for j in m.rows-->0:
for k in range(j + 1, m.rows):
result[j, i] -= m[j, k] * result[k, i]
result[j, i] = result[j, i] / m[j, j]
proc lu_invert*[T](m : HMatrix[T]) : HMatrix[T] = lu_invert(m, newHPivot[T]())
proc lu_det*[T](m : var HMatrix[T]) : T =
if m.rows != m.columns:
raise newException(SizeError, "Matrix must be square in order to compute the determinant")
let pivot = m.lup()
result = T.one
for i in 0..<m.rows:
result *= m[i, i]
if pivot.permutations mod 2 != 0:
result *= -T.one
proc lu_det*[T](m : HMatrix[T]) : T =
if m.rows != m.columns:
raise newException(SizeError, "Matrix must be square in order to compute the determinant")
var clone = m.clone()
lu_det(clone)
proc squared_norm2*[T](m : HMatrix[T]): T =
result = T.zero
for i, j, v in items(m):
result += v * v
proc norm2*[T](m : HMatrix[T]): T =
sqrt(m.squared_norm2())
proc `*`*[T](pivot : HPivot[T], m : HMatrix[T]) : HMatrix[T] =
result = m.clone()
var pclone = pivot
for i in 0..<pclone.len():
while i != pclone[i]:
result.swap_rows(i, pclone[i])
let tmp = pclone[i]
pclone[i] = pclone[tmp]
pclone[tmp] = tmp
proc from_pivot*[T](pivot : HPivot[T]): HMatrix[T] =
result = newHMatrix[T](len(pivot), len(pivot))
for i in 0..<pivot.len:
result[pivot[i], i] = T.one

50
src/mmath/hvector.nim Normal file
View File

@@ -0,0 +1,50 @@
type HVector*[T] = seq[T]
proc newHVector*[T](size : int, init: T=T.zero) : HVector[T] =
result = newSeq[T](size)
for i in 0..<len(result):
result[i] = init
proc newHVector*[T](size : int, init: proc(index : int) : T) : HVector[T] =
result = newSeq[T](size)
for i in 0..<len(result):
result[i] = init(i)
proc `+`*[T](v1 : HVector[T], v2:HVector[T]) : HVector[T] =
result = newHVector[T](len(v1))
for i in 0..<len(v1):
result[i] = v1[i] + v2[i]
proc `-`*[T](v1 : HVector[T], v2:HVector[T]) : HVector[T] =
result = newHVector[T](len(v1))
for i in 0..<len(v1):
result[i] = v1[i] - v2[i]
proc `*`*[T](v1 : HVector[T], v2:HVector[T]) : T =
result = T.zero
for i in 0..<len(v1):
result += v1[i] * v2[i]
proc `+=`*[T](v1 : var HVector[T], v2 : HVector[T]) =
for i in 0..<len(v1):
v1[i] += v2[i]
proc `-=`*[T](v1 : var HVector[T], v2 : HVector[T]) =
for i in 0..<len(v1):
v1[i] -= v2[i]
proc `+=`*[T](v : var HVector[T], value : T) = v.add(value)
proc buildHVector*[T](elems : varargs[T]) : HVector[T] =
result = newSeq[T]()
for elem in items(elems):
result += elem
proc norm*[T](v : HVector[T]) : T =
result = T.zero
for value in v:
result += v * v
proc abs*[T](v : HVector[T]) : T =
return v.norm().sqrt()

27
src/mmath/pivot.nim Normal file
View File

@@ -0,0 +1,27 @@
from hvector import HVector, newHVector
type
HPivot*[T] = object
data : HVector[int]
permutations* : int
SPivot*[SIZE : static[int], T] = object
data : array[SIZE, int]
permutations* : int
proc `[]`*[T](p : HPivot[T], index : int) : int = p.data[index]
proc `[]=`*[T](p : var HPivot[T], index : int, value : int) = p.data[index] = value
proc len*[T](p : HPivot[T]) : int = p.data.len
proc `$`*[T](pivot : HPivot[T]) : string = $pivot.data
proc newHPivot*[T](size : int) : HPivot[T] =
result = HPivot[T](data: newHVector[int](size), permutations:0)
for i in 0..<size:
result[i] = i
proc `[]`*[SIZE, T](p : SPivot[SIZE, T], index : int) : int = p.data[index]
proc `[]=`*[SIZE, T](p : var SPivot[SIZE, T], index : int, value : int) = p.data[index] = value
proc len*[SIZE, T](p : SPivot[SIZE, T]) : int = SIZE
proc `$`*[SIZE, T](pivot : SPivot[SIZE, T]) : string = $pivot.data
proc newSPivot*[SIZE, T]() : SPivot[SIZE, T] =
for i in 0..<SIZE:
result[i] = i

118
src/mmath/rational.nim Normal file
View File

@@ -0,0 +1,118 @@
import constant
export constant
proc gcd*[T](a : T, b : T) : T =
var n1 = a
var n2 = b
var tmp : T
while n2 != T.zero:
tmp = n1
n1 = n2
n2 = tmp mod n2
return n1
proc mcm*[T](n1 : T, n2 : T) : T = n1 * n2 div gcd(n1, n2)
proc pow*[T](n : T, e : T) : T =
result = T.one
for i in 0..<e:
result *= n
type Rational*[T] = object
num* : T
den* : T
proc simplify*[T](self : var Rational[T]) : void =
let gcd = gcd(self.num.abs(), self.den.abs())
let invertSign = self.den < T.zero
let num = self.num div gcd * (if invertSign: (T.zero - T.one) else : T.one)
let den = self.den div gcd * (if invertSign: (T.zero - T.one) else : T.one)
self.num = num
self.den = den
proc newRational*[T](num : T) : Rational[T] = Rational[T](num: num, den: T.one)
proc newRational*[T](num : T, den: T) : Rational[T] = Rational[T](num: num, den: den)
proc zero*[T](_: type[Rational[T]]): Rational[T] = newRational(T.zero, T.one)
proc one*[T](_: type[Rational[T]]): Rational[T] = newRational(T.one, T.one)
proc abs*[T](self : Rational[T]): Rational[T] = Rational[T](num: self.num.abs(), den: self.den.abs())
proc pow*[T](self : Rational[T], e : SomeInteger): Rational[T] = newRational(self.num.pow(e), self.den.pow(e))
proc sqrt*[T](self : Rational[T]) : Rational[T] = newRational(sqrt(self.num), sqrt(self.den))
proc `-`*[T](r1 : Rational[T]) : Rational[T] = newRational(-r1.num, r1.den)
proc `+`*[T](r1 : Rational[T], r2: Rational[T]) : Rational[T] =
let den = mcm(r1.den, r2.den)
result = newRational(r1.num * den div r1.den + r2.num * den div r2.den, den)
result.simplify()
proc `-`*[T](r1 : Rational[T], r2: Rational[T]) : Rational[T] =
let den = mcm(r1.den, r2.den)
result = newRational(r1.num * den div r1.den - r2.num * den div r2.den, den)
result.simplify()
proc `*`*[T](r1 : Rational[T], r2: Rational[T]) : Rational[T] =
result = newRational(r1.num * r2.num, r1.den * r2.den)
result.simplify()
proc `/`*[T](r1 : Rational[T], r2: Rational[T]) : Rational[T] =
result = newRational(r1.num * r2.den, r1.den * r2.num)
result.simplify()
proc `+=`*[T](r1 : var Rational[T], r2: Rational[T]) : void =
let den = mcm(r1.den, r2.den)
r1.num = r1.num * den div r1.den + r2.num * den div r2.den
r1.den = den
r1.simplify()
proc `-=`*[T](r1 : var Rational[T], r2: Rational[T]) : void =
let den = mcm(r1.den, r2.den)
r1.num = r1.num * den div r1.den - r2.num * den div r2.den
r1.den = den
r1.simplify()
proc `*=`*[T](r1 : var Rational[T], r2: Rational[T]) : void =
r1.num = r1.num * r2.num
r1.den = r1.den * r2.den
r1.simplify()
proc `/=`*[T](r1 : var Rational[T], r2: Rational[T]) : void =
r1.num = r1.num * r2.den
r1.den = r1.den * r2.num
r1.simplify()
proc `cmp`*[T](r1 : Rational[T], r2 : Rational[T]) : int =
cmp(r1.num * r2.den, r1.den * r2.num)
proc `==`*[T](r1 : Rational[T], r2 : Rational[T]) : bool =
cmp(r1, r2) == 0
proc `<`*[T](r1 : Rational[T], r2 : Rational[T]) : bool =
cmp(r1, r2) < 0
proc `<=`*[T](r1 : Rational[T], r2 : Rational[T]) : bool =
cmp(r1, r2) <= 0
proc `>`*[T](r1 : Rational[T], r2 : Rational[T]) : bool =
cmp(r1, r2) > 0
proc `>=`*[T](r1 : Rational[T], r2 : Rational[T]) : bool =
cmp(r1, r2) >= 0
proc `$`*[T](r : Rational[T]): string =
let zero = T.zero
let one = T.one
if r.num == T.zero and r.den != zero:
result = $zero
else:
let negative = r.num == r.num.abs() xor r.den == r.den.abs()
if r.den.abs() == one:
result = $(if negative: (zero - one) * r.num else: r.num)
else:
result = (if negative: "-" else: "") & $(r.num.abs()) & "/" & $(r.den.abs())

391
src/mmath/smatrix.nim Normal file
View File

@@ -0,0 +1,391 @@
from nwo/utils import `-->`, box
from svector import SVector
from pivot import SPivot, newSPivot, `[]`, `[]=`, len
from error import SizeError, SingularMatrixError
from math import sqrt
import constant
type
SMatrix*[ROWS, COLUMNS: static[int], T] = object
data : array[0..(ROWS*COLUMNS - 1), T]
SquareSMatrix*[SIZE: static[int], T] = SMatrix[SIZE, SIZE, T]
proc size*[ROWS, COLUMNS : static[int], T](m : SMatrix) : (int, int) = (m.rows, m.columns)
proc rows*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]) : int = ROWS
proc columns*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]) : int = COLUMNS
proc `[]`*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS,COLUMNS,T], r, c :int) : T =
m.data[r * COLUMNS + c]
proc `[]`*[ROWS, COLUMNS : static[int], T](m : var SMatrix[ROWS,COLUMNS,T], r, c :int) : var T =
m.data[r * COLUMNS + c]
proc `[]=`*[ROWS, COLUMNS : static[int], T](m : var SMatrix[ROWS,COLUMNS,T], r, c :int, newValue : T) =
m.data[r * COLUMNS + c] = newValue
iterator items*[ROWS, COLUMNS : static[int], T](m: SMatrix[ROWS,COLUMNS,T]): (int, int, T) =
for i in 0..<m.rows:
for j in 0..<m.columns:
yield (i, j, m[i, j])
proc newSMatrix*[ROWS, COLUMNS : static[int], T](init : T) : SMatrix[ROWS, COLUMNS, T] =
for i,j,_ in items(result):
result[i,j] = init
proc newSMatrix*[ROWS, COLUMNS : static[int], T](init : proc(i : int, j : int)) : SMatrix[ROWS, COLUMNS, T] =
for i in 0..<ROWS:
for j in 0..<COLUMNS:
result[i,j] = init(i, j)
proc newSMatrixFromArray*[ROWS, COLUMNS : static[int], T](values : array[0..(ROWS * COLUMNS - 1), T]) : auto =
SMatrix[ROWS, COLUMNS, T](data:values)
proc identity*[SIZE: static[int], T]() : SquareSMatrix[SIZE, T] =
for i in 0..<SIZE:
result[i,i] = T.one
proc `$`*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]) : string =
result = "["
for i,j,v in items(m):
if j == 0:
if i > 0: result &= " "
result &= "["
result &= $v
if j == (m.columns - 1):
result &= "]"
if i != (m.rows - 1):
result &= ",\n"
else:
result &= "]\n"
else: result &= ", "
proc `*`*[ROWS1, COLUMNS2, COMMON : static[int], T](
m1 : SMatrix[ROWS1, COMMON, T],
m2 : SMatrix[COMMON, COLUMNS2, T]) : SMatrix[ROWS1, COLUMNS2, T] =
for i in 0..<result.rows:
for j in 0..<result.columns:
result[i, j] = T.zero
for k in 0..<m1.columns:
result[i, j] += m1[i, k] * m2[k, j]
proc `*`*[SIZE : static[int], T](v : SVector[SIZE, T], m : SquareSMatrix[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<m.rows:
for j in 0..<m.columns:
result[j] += m[i, j] * v[i]
proc `*`*[SIZE : static[int], T](m1 : SquareSMatrix[SIZE, T], v2 : SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i] += m1[i, j] * v2[j]
proc `+`*[ROWS, COLUMNS : static[int], T](addend1 : SMatrix[ROWS, COLUMNS, T], addend2 : SMatrix[ROWS, COLUMNS, T]) : SMatrix[ROWS, COLUMNS, T] =
for i in 0..<addend1.rows:
for j in 0..<addend1.columns:
result[i,j] = addend1[i,j] + addend2[i,j]
proc `+`*[ROWS, COLUMNS : static[int], T](m1 : SMatrix[ROWS, COLUMNS, T], v : T) : SMatrix[ROWS, COLUMNS, T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] + v
proc `-`*[ROWS, COLUMNS : static[int], T](m1 : SMatrix[ROWS, COLUMNS,T], m2 : SMatrix[ROWS, COLUMNS, T]) : SMatrix[ROWS, COLUMNS,T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] - m2[i,j]
proc `-`*[ROWS, COLUMNS : static[int], T](m1 : SMatrix[ROWS, COLUMNS, T], v : T) : SMatrix[ROWS, COLUMNS, T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
result[i,j] = m1[i,j] - v
proc `+=`*[ROWS, COLUMNS : static[int], T](m1 : var SMatrix[ROWS, COLUMNS, T], m2 : SMatrix[ROWS, COLUMNS, T]) =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] += m2[i,j]
proc `+=`*[ROWS, COLUMNS : static[int], T](m1 : var SMatrix[ROWS, COLUMNS, T], v : T) : SMatrix[ROWS, COLUMNS, T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] += v
proc `-=`*[ROWS, COLUMNS : static[int], T](m1 : var SMatrix[ROWS, COLUMNS, T], v : T) : SMatrix[ROWS, COLUMNS, T] =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] -= v
proc `-=`*[ROWS, COLUMNS : static[int], T](m1 : var SMatrix[ROWS, COLUMNS, T], m2 : SMatrix[ROWS, COLUMNS, T]) =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
m1[i,j] -= m2[i,j]
proc `-`*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]) : SMatrix[ROWS, COLUMNS, T] =
for i,j,v in m:
result[i,j] = -v
proc `==`*[ROWS, COLUMNS : static[int], T](m1 : SMatrix[ROWS, COLUMNS, T], m2 : SMatrix[ROWS, COLUMNS, T]) : bool =
for i in 0..<m1.rows:
for j in 0..<m1.columns:
if m1[i,j] != m2[i,j]:
return false
return true
proc squared_norm2*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]): T =
result = T.zero
for i, j, v in items(m):
result += v * v
proc norm2*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]): T =
sqrt(m.squared_norm2())
proc clone*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]) : SMatrix[ROWS, COLUMNS, T] =
newSMatrixFromArray[ROWS, COLUMNS, T](m.data)
proc transpose*[ROWS, COLUMNS : static[int], T](m : SMatrix[ROWS, COLUMNS, T]) : SMatrix[COLUMNS, ROWS, T] =
for i, j, v in items(m):
result[j, i] = v
proc swap_rows[ROWS, COLUMNS : static[int], T](m : var SMatrix[ROWS, COLUMNS, T], id1 : int, id2 : int) =
for i in 0..<m.columns:
let tmp = m[id1, i]
m[id1, i] = m[id2, i]
m[id2, i] = tmp
proc swap_rows[ROWS, COLUMNS : static[int], T](m : var SMatrix[ROWS, COLUMNS, T], id1 : int, id2 : int, pivot : var SPivot[ROWS, T]) =
m.swap_rows(id1, id2)
let tmp = pivot[id1]
pivot[id1] = pivot[id2]
pivot[id2] = tmp
pivot.permutations += 1
proc swap_rows[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T], id1 : int,
id2 : int,
pivot : var SPivot[ROWS, T],
other : var SMatrix[ROWS, COLUMNS,T]) =
m.swap_rows(id1, id2, pivot)
other.swap_rows(id1, id2)
proc add_row[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T],
sourceIndex : int,
destIndex : int,
factor : T) =
for i in 0..<m.columns:
m[destIndex, i] = m[destIndex, i] + m[sourceIndex, i] * factor
proc add_row[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T],
sourceIndex : int,
destIndex : int,
factor : T,
other : var SMatrix[ROWS, COLUMNS, T]) =
add_row(m, source_index, dest_index, factor)
other.add_row(sourceIndex, destIndex, factor)
proc gauss_jordan_low*[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T],
other : var SMatrix[ROWS, COLUMNS, T]) =
var pivot = newSPivot[ROWS, T]()
for i in 0..<m.rows:
if m[i, i] == T.zero:
for j in (i + 1)..<m.columns:
if m[j, i] != 0:
m.swap_rows(i, j, pivot, other)
break
for j in (i + 1)..<m.rows:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor, other)
proc gauss_jordan_low*[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T]) =
var pivot = newSPivot[ROWS, T]()
for i in 0..<m.rows:
if m[i, i] == 0:
for j in (i + 1)..<m.columns:
if m[j, i] != 0:
m.swap_rows(i, j, pivot)
break
for j in (i + 1)..<m.rows:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor)
proc gauss_jordan_high*[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T]) =
var pivot = newSPivot[ROWS, T]()
for i in m.rows-->0:
if m[i, i] == 0:
for j in i-->0:
if m[j, i] != 0:
m.swap_rows(i, j, pivot)
break
for j in i-->0:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor)
proc gauss_jordan_high*[ROWS, COLUMNS : static[int], T](
m : var SMatrix[ROWS, COLUMNS, T],
other : var SMatrix[ROWS, COLUMNS, T]) =
var pivot = newSPivot[ROWS, T]()
for i in m.rows-->0:
if m[i, i] == 0:
for j in i-->0:
if m[j, i] != 0:
m.swap_rows(i, j, pivot, other)
break
for j in i-->0:
if m[i, i] != 0:
let factor = -m[j, i] / m[i, i]
m.add_row(i, j, factor, other)
proc det*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T]) : T =
var clone = m.clone()
clone.gauss_jordan_low()
result = T.one
for i in 0..<clone.rows:
result *= clone[i, i]
proc invert*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T]) : SquareSMatrix[SIZE, T] =
var tmp = m.clone()
result = identity[SIZE, T]()
tmp.gauss_jordan_low(result)
tmp.gauss_jordan_high(result)
for i in 0..<result.rows:
let f = tmp[i, i]
for j in 0..<result.columns:
result[i, j] /= f
proc triu*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T], diag_replacement: T) : SquareSMatrix[SIZE, T] =
for i in 0..<m.rows:
for j in 0..<m.columns:
if i < j:
result[i, j] = m[i, j]
elif i == j:
result[i, j] = diag_replacement
else:
result[i, j] = T.zero
proc triu*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T]) : SquareSMatrix[SIZE, T] =
for i in 0..<m.rows:
for j in 0..<m.columns:
if i <= j:
result[i, j] = m[i, j]
else:
result[i, j] = T.zero
proc tril*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T], diag_replacement : T) : SquareSMatrix[SIZE, T] =
for i in 0..<m.rows:
for j in 0..<m.columns:
if i > j:
result[i, j] = m[i, j]
elif i == j:
result[i, j] = diag_replacement
else:
result[i, j] = T.zero
proc tril*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T]) : SquareSMatrix[SIZE, T] =
for i in 0..<m.rows:
for j in 0..<m.columns:
if i >= j:
result[i, j] = m[i, j]
else:
result[i, j] = T.zero
proc lu_row[SIZE : static[int], T](m : var SquareSMatrix[SIZE, T], i : int) =
if m[i, i] == T.zero:
raise newException(SingularMatrixError, "Matrix is singular")
for j in i..<m.columns:
for k in 0..<i:
m[i, j] = m[i, j] - m[i, k] * m[k, j]
for j in (i + 1)..<m.columns:
for k in 0..<i:
m[j, i] = m[j, i] - m[j, k] * m[k, i]
m[j, i] /= m[i, i]
proc lu_pivot[SIZE : static[int], T](m : var SquareSMatrix[SIZE, T], i : int, pivot : var SPivot[SIZE, T]) =
var max = abs(m[i, i])
var max_index = i
for j in (i + 1)..<m.rows:
if abs(m[j, i]) > max:
max = abs(m[i, j])
max_index = j
if max_index != i:
m.swap_rows(i, max_index, pivot)
proc lu*[SIZE : static[int], T](m : var SquareSMatrix[SIZE, T]) =
for i in 0..<m.rows:
m.lu_row(i)
proc lup*[SIZE : static[int], T](m : var SquareSMatrix[SIZE, T]) : SPivot[SIZE, T] =
result = newSPivot[SIZE,T]()
for i in 0..<m.rows:
m.lu_pivot(i, result)
m.lu_row(i)
proc lu_solve*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T], b : SVector[SIZE, T], pivot : SPivot[SIZE, T]) : SVector[SIZE, T] =
var x : SVector[SIZE, T]
for i in 0..<m.rows:
x[i] = b[pivot[i]]
for k in 0..<i:
x[i] = x[i] - m[i, k] * x[k]
for i in m.rows --> 0:
for k in (i + 1)..<m.rows:
x[i] = x[i] - m[i, k] * x[k]
if m[i,i] != 0:
x[i] /= m[i, i]
else:
raise newException(SingularMatrixError, "Matrix is singular")
return x
proc lu_solve*[SIZE : static[int], T](
m : SquareSMatrix[SIZE, T],
b : SVector[SIZE, T]) : SVector[SIZE, T] =
var pivot = newSPivot[SIZE, T]()
lu_solve(m, b, pivot)
proc lu_invert*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T], pivot : SPivot[SIZE, T]) : SquareSMatrix[SIZE, T] =
for i in 0..<m.rows:
for j in 0..<m.rows:
if pivot[j] == i:
result[j, i] = T.one
else:
result[j, i] = T.zero
for k in range(j):
result[j, i] -= m[j, k] * result[k, i]
for j in m.rows-->0:
for k in range(j + 1, m.rows):
result[j, i] -= m[j, k] * result[k, i]
result[j, i] = result[j, i] / m[j, j]
proc lu_invert*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T]) : SquareSMatrix[SIZE, T] = lu_invert(m, newSPivot[SIZE, T]())
proc lu_det*[SIZE : static[int], T](m : var SquareSMatrix[SIZE, T]) : T =
let pivot = m.lup()
result = T.one
for i in 0..<m.rows:
result *= m[i, i]
if pivot.permutations mod 2 != 0:
result *= -T.one
proc lu_det*[SIZE : static[int], T](m : SquareSMatrix[SIZE, T]) : T =
var clone = m.clone()
lu_det(clone)
proc `*`*[ROWS, COLUMNS : static[int], T](pivot : SPivot[ROWS, T], m : SMatrix[ROWS, COLUMNS, T]) : SMatrix[ROWS, COLUMNS, T] =
result = m.clone()
var pclone = pivot
for i in 0..<pclone.len():
while i != pclone[i]:
result.swap_rows(i, pclone[i])
let tmp = pclone[i]
pclone[i] = pclone[tmp]
pclone[tmp] = tmp
proc from_pivot*[SIZE : static[int], T](pivot : SPivot[SIZE, T]): SquareSMatrix[SIZE, T] =
result = newSMatrix[T](len(pivot), len(pivot))
for i in 0..<SIZE:
result[pivot[i], i] = T.one

79
src/mmath/svector.nim Normal file
View File

@@ -0,0 +1,79 @@
from math import sqrt
type SVector*[S : static[int], T] = array[0..(S-1), T]
proc newSVector*[SIZE, T](init: T=T.zero) : SVector[SIZE, T] =
for i in 0..<len(result):
result[i] = init
proc newSVector*[SIZE, T](init: proc(index : int) : T) : SVector[SIZE, T] =
for i in 0..<len(result):
result[i] = init(i)
proc buildSVector*[SIZE, T](elems : varargs[T]) : SVector[SIZE, T] =
for i in 0..<elems.len:
result[i] = elems[i]
proc `+`*[SIZE, T](v1 : SVector[SIZE, T], scalar: T) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = v1[i] + scalar
proc `+`*[SIZE, T](scalar: T, v1 : SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = scalar + v1[i]
proc `-`*[SIZE, T](v1 : SVector[SIZE, T], scalar: T) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = v1[i] - scalar
proc `-`*[SIZE, T](scalar: T, v1 : SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = scalar - v1[i]
proc `*`*[SIZE, T](v1 : SVector[SIZE, T], scalar: T) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = v1[i] * scalar
proc `*`*[SIZE, T](scalar: T, v1 : SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = scalar * v1[i]
proc `/`*[SIZE, T](v1 : SVector[SIZE, T], scalar: T) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = v1[i] / scalar
proc `/`*[SIZE, T](scalar: T, v1 : SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = scalar / v1[i]
proc `+`*[SIZE, T](v1 : SVector[SIZE, T], v2: SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = v1[i] + v2[i]
proc `-`*[SIZE, T](v1 : SVector[SIZE, T], v2: SVector[SIZE, T]) : SVector[SIZE, T] =
for i in 0..<len(v1):
result[i] = v1[i] - v2[i]
proc `*`*[SIZE, T](v1 : SVector[SIZE, T], v2: SVector[SIZE, T]) : T =
result = T.zero
for i in 0..<len(v1):
result += v1[i] * v2[i]
proc `+=`*[SIZE, T](v1 : var SVector[SIZE, T], v2: SVector[SIZE, T]) =
for i in 0..<len(v1):
v1[i] += v2[i]
proc `-=`*[SIZE, T](v1 : var SVector[SIZE, T], v2: SVector[SIZE, T]) =
for i in 0..<len(v1):
v1[i] -= v2[i]
proc `+=`*[SIZE, T](v : var SVector[SIZE, T], value : T) = v.add(value)
proc norm*[SIZE, T](v : SVector[SIZE, T]) : T =
result = T.zero
for value in v:
result += v * v
proc abs*[SIZE, T](v : SVector[SIZE, T]) : T =
return math.sqrt(v.norm)

1
tests/config.nims Normal file
View File

@@ -0,0 +1 @@
switch("path", "$projectDir/../src")

63
tests/test_bigint.nim Normal file
View File

@@ -0,0 +1,63 @@
import mmath/bigint
import unittest
import random
from strutils import parseBiggestUInt
suite "Nim arbitrary precision integers (powered by GMP)":
let str = "2347822319"
test "parse " & str:
let str = "2347822319"
let bi = BigInt.fromString(str, 10)
let ul : BiggestUInt = parseBiggestUInt(str)
check newBigInt(ul.int64) == bi
var rng = initRand(101325)
for i in 0..5:
let n1 = rng.rand(-1000..1000).int64
let n2 = rng.rand(-1000..1000).int64
let bi1 = BigInt.of(n1)
let bi2 = BigInt.of(n2)
test $n1 & " + " & $n2:
check BigInt.of(n1 + n2) == bi1 + bi2
test $n1 & " - " & $n2:
check BigInt.of(n1 - n2) == bi1 - bi2
test $n1 & " * " & $n2:
check BigInt.of(n1 * n2) == bi1 * bi2
test $n1 & " div " & $n2:
check BigInt.of(n1 div n2) == bi1 div bi2
test $n1 & " mod " & $n2:
check BigInt.of(n1 mod n2) == bi1 mod bi2
test $n1 & " pow " & $3:
check BigInt.of(n1 * n1 * n1) == pow(bi1, 3)
test "abs(" & $n1 & ")":
check BigInt.of(n1.abs()) == bi1.abs()
test "abs(" & $n2 & ")":
check BigInt.of(n2.abs()) == bi2.abs()
test $n1 & " cmp " & $n2:
check cmp(n1, n2) == cmp(bi1, bi2)
test $n1 & " < " & $n2:
check (n1 < n2) == (bi1 < bi2)
test $n1 & " > " & $n2:
check (n1 > n2) == (bi1 > bi2)
test $n1 & " == " & $n1:
check bi1 == bi1
test $n2 & " == " & $n2:
check bi2 == bi2
test $n1 & " != " & $n2:
check bi1 != bi2

115
tests/test_hmatrix.nim Normal file
View File

@@ -0,0 +1,115 @@
from random import initRand, rand
from nwo/utils import `...`
from mmath/rational import newRational, Rational, one, zero, abs, `>`, `<`, `==`, `*`, `+`, `-`, `/`, `/=`, `+=`, `sqrt`
from mmath/hmatrix import det, lu, from_pivot, newHMatrix, HMatrix, lu_det, invert, identity,
clone, tril, triu, lu_solve, `*`, `-`, `+`, `+=`, `-=`, `==`, norm2, transpose, lup, squared_norm2
from mmath/hvector import buildHVector, newHVector, `-`, abs, norm
import unittest
suite "Nim linear algebra library":
let test_matrix = newHMatrix[float32](3, 3, [1.0f32, 2f32, 3f32, 4f32, 5f32, 6f32, 8f32, 7f32, 9f32])
test "+":
let mtx1 = newHMatrix[int8](3, 3, [1i8,2,3,4,5,6,7,8,9])
let mtx2 = newHMatrix[int8](3, 3, [-1i8,-2,-3,-4,-5,-6,-7,-8,-9])
check(mtx1 + mtx2 == newHMatrix[int8](3,3))
test "-":
let mtx = newHMatrix[int8](3, 3, [1i8,2,3,4,5,6,7,8,9])
check(mtx - mtx == newHMatrix[int8](3, 3))
test "+=":
var mtx = newHMatrix[int8](3, 3, [1i8,2,3,4,5,6,7,8,9])
mtx += mtx
check(mtx == newHMatrix[int8](3, 3, [2i8,4,6,8,10,12,14,16,18]))
test "-=":
var mtx = newHMatrix[int8](3, 3, [1i8,2,3,4,5,6,7,8,9])
mtx -= mtx
check(mtx == newHMatrix[int8](3, 3))
test "*":
block:
let mtx = newHMatrix[int8](3, 3, [1i8,2,3,4,5,6,8,7,9])
let res = mtx * buildHVector[int8](1i8, 2, 3)
check(res == buildHVector[int8](14i8, 32, 49))
block:
let mtx = newHMatrix[int](2, 5, [1,4,8,2,5,7,3,6,9,0])
let res = mtx * mtx.transpose()
check(res == newHMatrix[int](2, 2, [110,85,85,175]))
block:
let mtx = newHMatrix[int](2, 5, [1,4,8,2,5,7,3,6,9,0])
let res = mtx.transpose() * mtx
check(res == newHMatrix[int](5, 5, [
50, 25, 50, 65, 5,
25, 25, 50, 35, 20,
50, 50, 100, 70, 40,
65, 35, 70, 85, 10,
5, 20, 40, 10, 25]))
test "Determinant":
check(test_matrix.det() == -9f32)
test "LU Determinant":
check(test_matrix.lu_det() == -9f32)
test "Inverse":
let err = test_matrix * test_matrix.invert() - identity[float32](3)
check(err.norm2() < 1e-5)
test "LU decomposition":
var rng = initRand(101325)
var arr : array[0..(25 - 1), Rational[int64]]
for i in 0..<arr.len:
arr[i] = newRational(rng.rand(-20..20).int64, 20.int64)
let mtx = newHMatrix[Rational[int64]](5, 5, arr)
var lu = mtx.clone()
let pivot = lu.lup()
let l = lu.tril(Rational[int64].one)
let u = lu.triu()
let err = pivot * mtx - (l * u)
check(err.squared_norm2() == Rational[int64].zero)
test "Linear system solve":
var rng = initRand(101325)
var arr : array[0..(100 * 100 - 1), float64]
for i in 0..<arr.len:
arr[i] = rng.rand(-100f32..100f32)
var mtx = newHMatrix[float64](100, 100, arr)
var lu = mtx.clone()
let pivot = lu.lup()
var b = newHVector[float64](100, 0.0f)
for i in 0...len(b):
b[i] = float64(rng.rand(b.len))
let x = lu.lu_solve(b, pivot)
let error = (mtx * x) - b
check(error.norm() < 1e-5)
test "triu":
let mtx = newHMatrix[int8](3, 3, [1i8,2,3,4,5,6,7,8,9])
block:
let upper = mtx.triu()
check(upper == newHMatrix[int8](3, 3, [1i8,2,3,0,5,6,0,0,9]))
block:
let upper = mtx.triu(1)
check(upper == newHMatrix[int8](3, 3, [1i8,2,3,0,1,6,0,0,1]))
test "tril":
let mtx = newHMatrix[uint](3, 3, [1u,2,3,4,5,6,7,8,9])
block:
let lower = mtx.tril()
check(lower == newHMatrix[uint](3, 3, [1u,0,0,4,5,0,7,8,9]))
block:
let lower = mtx.tril(1)
check(lower == newHMatrix[uint](3, 3, [1u,0,0,4,1,0,7,8,1]))
test "transpose":
block:
let mtx = newHMatrix[int](3, 3, [1, 2, 3, 4, 5, 6, 8, 7, 9])
let xpose = newHMatrix[int](3, 3, [1,4,8,2,5,7,3,6,9])
check(mtx.transpose() == xpose)
block:
let mtx = newHMatrix[int](2, 5, [1,4,8,2,5,7,3,6,9,0])
let xpose = newHMatrix[int](5, 2, [1,7,4,3,8,6,2,9,5,0])
check(mtx.transpose() == xpose)

96
tests/test_rational.nim Normal file
View File

@@ -0,0 +1,96 @@
import unittest
from mmath/rational import newRational, `+`, `-`, `*`, `/`, `$`, simplify, gcd, pow, mcm, `==`, `cmp`, `<`, `>`, `<=`, `>=`, abs
suite "Nim rational numbers":
test "gcd":
let a = 14
let b = 21
check 7 == gcd(a, b)
test "mcm":
let a = 14
let b = 21
check 42 == mcm(a, b)
test "pow":
check 625 == pow(5, 4)
test "==":
let r1 = newRational(1, 3)
let r2 = newRational(5, 15)
let r3 = newRational(35, 105)
check r1 == r2
check r1 == r3
check r2 == r3
test "+":
let r1 = newRational(1, 3)
let r2 = newRational(2, 3)
let r3 = r1 + r2
check r3 == newRational(1)
test "-":
let r1 = newRational(1, 3)
let r2 = newRational(2, 3)
let r3 = r1 - r2
check r3 == newRational(-1, 3)
test "*":
let r1 = newRational(1, 3)
let r2 = newRational(2, 3)
let r3 = r1 * r2
check r3 == newRational(2, 9)
test "/":
let r1 = newRational(1, 3)
let r2 = newRational(2, 3)
let r3 = r1 / r2
check r3 == newRational(1, 2)
test "simplify":
var r1 = newRational(65, 169)
check r1 == newRational(5, 13)
r1.simplify()
check r1.num == 5
check r1.den == 13
test "pow":
let r1 = newRational(65, 169)
let r2 = r1.pow(2)
check r2 == newRational(25, 169)
test "cmp":
let r1 = newRational(65, 169)
let r2 = newRational(5, 13)
let r3 = newRational(6, 13)
check r1 < r3
check r3 > r1
check r1 <= r3
check r1 <= r2
check r3 >= r1
check r2 >= r1
check r2 == r1
test "abs":
let r1 = newRational(-65, -169)
let r2 = newRational(65, -169)
check r1 == r1.abs()
check r1 == r2.abs()
check r1 != r2
test "i64":
let p1 = 32452867i64
let p2 = 49979687i64
let p3 = 15485867i64
let r1 = newRational(p3, p1 * p2)
let r2 = newRational(p2, p1 * p3)
var r3 = newRational(p2, p2 * p3)
check newRational(1i64, p3) == r3
r3.simplify()
check r3.num == 1i64
check r3.den == p3
expect(OverflowDefect):
discard r1 / r2
expect(OverflowDefect):
discard r1 + r2

119
tests/test_smatrix.nim Normal file
View File

@@ -0,0 +1,119 @@
from random import initRand, rand
from nwo/utils import `...`
from mmath/smatrix import det, lu, lup, lu_det, lup, det, from_pivot, invert, identity,
newSMatrix, SMatrix, clone, tril, triu, lu_solve, `$`, `*`, `-`, `+`, `-=`, `+=`, `==`, `*`, norm2, newSMatrixFromArray,
gauss_jordan_high, gauss_jordan_low, transpose, squared_norm2
from mmath/svector import buildSVector, `-`, abs, norm, Svector
from mmath/error import SingularMatrixError
from mmath/rational import newRational, Rational, one, zero, abs, `>`, `<`, `==`, `*`, `+`, `-`, `/`, `/=`, `+=`, `sqrt`
import unittest
suite "Nim linear algebra library":
let test_matrix = newSMatrixFromArray[3, 3, float32]([1.0f32, 2f32, 3f32, 4f32, 5f32, 6f32, 8f32, 7f32, 9f32])
test "+":
let mtx1 = newSMatrixFromArray[3, 3, int8]([1i8,2,3,4,5,6,7,8,9])
let mtx2 = newSMatrixFromArray[3, 3, int8]([-1i8,-2,-3,-4,-5,-6,-7,-8,-9])
check(mtx1 + mtx2 == SMatrix[3, 3, int8]())
test "-":
let mtx = newSMatrixFromArray[3, 3, int8]([1i8,2,3,4,5,6,7,8,9])
check(mtx - mtx == SMatrix[3, 3, int8]())
test "+=":
var mtx = newSMatrixFromArray[3, 3, int8]([1i8,2,3,4,5,6,7,8,9])
mtx += mtx
check(mtx == newSMatrixFromArray[3, 3, int8]([2i8,4,6,8,10,12,14,16,18]))
test "-=":
var mtx = newSMatrixFromArray[3, 3, int8]([1i8,2,3,4,5,6,7,8,9])
mtx -= mtx
check(mtx == SMatrix[3, 3, int8]())
test "*":
block:
let mtx = newSMatrixFromArray[3, 3, int8]([1i8,2,3,4,5,6,8,7,9])
let res = mtx * buildSVector[3, int8](1i8, 2, 3)
check(res == buildSVector[3, int8](14i8, 32, 49))
block:
let mtx = newSMatrixFromArray[2, 5, int]([1,4,8,2,5,7,3,6,9,0])
let res = mtx * mtx.transpose()
check(res == newSMatrixFromArray[2, 2, int]([110,85,85,175]))
block:
let mtx = newSMatrixFromArray[2, 5, int]([1,4,8,2,5,7,3,6,9,0])
let res = mtx.transpose() * mtx
check(res == newSMatrixFromArray[5, 5, int]([
50, 25, 50, 65, 5,
25, 25, 50, 35, 20,
50, 50, 100, 70, 40,
65, 35, 70, 85, 10,
5, 20, 40, 10, 25]))
test "Determinant":
check(test_matrix.det() == -9f32)
test "LU Determinant":
check(test_matrix.lu_det() == -9f32)
test "Inverse":
let err = test_matrix * test_matrix.invert() - identity[3, float32]()
check(err.norm2() < 1e-5)
test "LU decomposition":
var rng = initRand(101325)
var arr : array[0..(25 - 1), Rational[int64]]
for i in 0..<arr.len:
arr[i] = newRational(rng.rand(-20..20).int64, 20.int64)
let mtx = newSMatrixFromArray[5, 5, Rational[int64]](arr)
var lu = mtx.clone()
let pivot = lu.lup()
let l = lu.tril(Rational[int64].one)
let u = lu.triu()
let err = pivot * mtx - (l * u)
check(err.squared_norm2() == Rational[int64].zero)
test "Linear system solve":
var rng = initRand(101325)
var arr : array[0..(100 * 100 - 1), float64]
for i in 0..<arr.len:
arr[i] = rng.rand(-100f32..100f32)
var mtx = newSMatrixFromArray[100, 100, float64](arr)
var lu = mtx.clone()
let pivot = lu.lup()
var b : SVector[100, float64]
for i in 0...len(b):
b[i] = float64(rng.rand(b.len))
let x = lu.lu_solve(b, pivot)
let error = (mtx * x) - b
check(error.norm() < 1e-5)
test "triu":
let mtx = newSMatrixFromArray[3, 3, int8]([1i8,2,3,4,5,6,7,8,9])
block:
let upper = mtx.triu()
check(upper == newSMatrixFromArray[3, 3, int8]([1i8,2,3,0,5,6,0,0,9]))
block:
let upper = mtx.triu(1)
check(upper == newSMatrixFromArray[3, 3, int8]([1i8,2,3,0,1,6,0,0,1]))
test "tril":
let mtx = newSMatrixFromArray[3, 3, uint]([1u,2,3,4,5,6,7,8,9])
block:
let lower = mtx.tril()
check(lower == newSMatrixFromArray[3, 3, uint]([1u,0,0,4,5,0,7,8,9]))
block:
let lower = mtx.tril(1)
check(lower == newSMatrixFromArray[3, 3, uint]([1u,0,0,4,1,0,7,8,1]))
test "transpose":
block:
let mtx = newSMatrixFromArray[3, 3, int]([1, 2, 3, 4, 5, 6, 8, 7, 9])
let xpose = newSMatrixFromArray[3, 3, int]([1,4,8,2,5,7,3,6,9])
check(mtx.transpose() == xpose)
block:
let mtx = newSMatrixFromArray[2, 5, int]([1,4,8,2,5,7,3,6,9,0])
let xpose = newSMatrixFromArray[5, 2, int]([1,7,4,3,8,6,2,9,5,0])
check(mtx.transpose() == xpose)

View File

@@ -1,72 +0,0 @@
from oomacro import class
from utils import `...`
from sequtils import newSeqWith
from math import sqrt
type Vector*[T] = seq[T]
#SVector*[S : static[int], T] = array[1..S,T]
proc newVector*[T](size : int, init: T=0) : Vector[T] =
result = newSeq[T](size)
for i in 0...len(result):
result[i] = init
proc `+`*[T](v1 : Vector[T], v2:Vector[T]) : Vector[T] =
result = newVector[T](len(v1))
for i in 0...len(v1):
result[i] = v1[i] + v2[i]
proc `-`*[T](v1 : Vector[T], v2:Vector[T]) : Vector[T] =
result = newVector[T](len(v1))
for i in 0...len(v1):
result[i] = v1[i] - v2[i]
proc `*`*[T](v1 : Vector[T], v2:Vector[T]) : T =
result = 0
for i in 0...len(v1):
result += v1[i] * v2[i]
proc `+=`*[T](v1 : var Vector[T], v2 : Vector[T]) =
for i in 0...len(v1):
v1[i] += v2[i]
proc `-=`*[T](v1 : var Vector[T], v2 : Vector[T]) =
for i in 0...len(v1):
v1[i] -= v2[i]
proc `+=`*[T](v : var Vector[T], value : T) = v.add(value)
proc createVector*[T](elems : varargs[T]) : Vector[T] =
result = newSeq[T]()
for elem in items(elems):
result += elem
proc norm*[T](v : Vector[T]) : T =
for value in v:
result += v * v
proc abs*[T](v : Vector[T]) : T =
return math.sqrt(v.norm)
# let vec = createVector(10,1)
# echo $vec
# var vec2 = newVector[int](10, 1)
# echo vec2
# type Foo[T, S] = object of RootObj
# data : S
# proc `+`[T,S](v1 : Foo[T,S], v2 : Foo[T,S]) : Foo[T,S] =
# result = Foo[T,S]()
# for i in range(len(v1.data)):
# result[i] = v1.data[i] + v2.data[i]
# type Bar[T] = Foo[T, array[3,T]]
# var bar = Bar[int]()
# bar.data[1] = 4
# bar.data[1] = 4