215 lines
5.6 KiB
Rust
215 lines
5.6 KiB
Rust
use num_traits::One;
|
|
use num_traits::Zero;
|
|
use std::ops::Add;
|
|
use std::ops::Div;
|
|
use std::ops::DivAssign;
|
|
use std::ops::Mul;
|
|
use std::ops::MulAssign;
|
|
use std::ops::Neg;
|
|
use std::ops::SubAssign;
|
|
|
|
use crate::err::RmathError;
|
|
|
|
use super::hpivot::HPivot;
|
|
use super::matrix::LUDecompositionImpl;
|
|
use super::matrix::NumericalMatrixImpl;
|
|
use super::HMatrix;
|
|
use super::LUDecomposition;
|
|
use super::Matrix;
|
|
use super::NumericalMatrix;
|
|
use super::Pivot;
|
|
use super::SingularMatrixError;
|
|
|
|
use super::misc::EnhancedOption;
|
|
|
|
pub struct HLUDecomposition<TYPE> {
|
|
matrix: HMatrix<TYPE>,
|
|
pivot: HPivot,
|
|
}
|
|
|
|
impl<TYPE> HLUDecomposition<TYPE>
|
|
where TYPE : Zero + SubAssign<TYPE> + Clone,
|
|
for<'a> &'a TYPE : Mul<&'a TYPE, Output = TYPE>,
|
|
for<'a> TYPE : DivAssign<&'a TYPE> {
|
|
pub (crate) fn new(matrix: HMatrix<TYPE>, pivot: Option<HPivot>) -> Self {
|
|
let size = matrix.rows();
|
|
HLUDecomposition {
|
|
matrix,
|
|
pivot: pivot.otherwise(|| HPivot::new(size)),
|
|
}
|
|
}
|
|
|
|
pub fn solve(&self, b : &HMatrix<TYPE>) -> Result<HMatrix<TYPE>, Box<dyn RmathError>> {
|
|
let mut x = HMatrix::<TYPE>::new(b.rows(), b.columns(), |_| TYPE::zero());
|
|
for n in 0..b.columns() {
|
|
for i in 0..self.matrix.rows() {
|
|
x[(i, n)] = b[(self.pivot[i], n)].clone();
|
|
for k in 0..i {
|
|
let sub = &self.matrix[(i, k)] * &x[(k, n)];
|
|
x[(i, n)] -= sub;
|
|
}
|
|
}
|
|
for i in (0..self.matrix.rows()).rev() {
|
|
for k in (i + 1)..self.matrix.rows() {
|
|
let sub = &self.matrix[(i, k)] * &x[(k, n)];
|
|
x[(i, n)] -= sub;
|
|
}
|
|
if self.matrix[(i, i)].is_zero() {
|
|
return Err(Box::<SingularMatrixError>::default());
|
|
} else {
|
|
x[(i, n)] /= &self.matrix[(i, i)];
|
|
}
|
|
}
|
|
}
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
impl<TYPE> LUDecompositionImpl<TYPE, HMatrix<TYPE>, HPivot> for HLUDecomposition<TYPE>
|
|
where
|
|
for<'a> TYPE: 'a + One + MulAssign<&'a TYPE> + Neg<Output = TYPE>,
|
|
{
|
|
fn get_matrix(&self) -> &HMatrix<TYPE> {
|
|
&self.matrix
|
|
}
|
|
|
|
fn get_pivot(&self) -> &HPivot {
|
|
&self.pivot
|
|
}
|
|
}
|
|
|
|
impl<TYPE> LUDecomposition<TYPE, HMatrix<TYPE>, HPivot> for HLUDecomposition<TYPE>
|
|
where
|
|
for<'b> TYPE: 'b
|
|
+ Clone
|
|
+ Zero
|
|
+ One
|
|
+ PartialEq
|
|
+ PartialOrd
|
|
+ Add<&'b TYPE, Output = TYPE>
|
|
+ Neg<Output = TYPE>
|
|
+ Div<Output = TYPE>
|
|
+ SubAssign<TYPE>
|
|
+ SubAssign<&'b TYPE>
|
|
+ DivAssign<TYPE>
|
|
+ DivAssign<&'b TYPE>
|
|
+ MulAssign<&'b TYPE>,
|
|
for<'c> &'c TYPE:
|
|
Mul<Output = TYPE> + Add<Output = TYPE> + Div<Output = TYPE> + Neg<Output = TYPE>,
|
|
{
|
|
fn l(&self) -> HMatrix<TYPE> {
|
|
self.matrix.clone().tril_replace(TYPE::one())
|
|
}
|
|
|
|
fn u(&self) -> HMatrix<TYPE> {
|
|
self.matrix.clone().triu()
|
|
}
|
|
|
|
fn invert(&self) -> HMatrix<TYPE> {
|
|
let mut result =
|
|
HMatrix::<TYPE>::new(self.matrix.rows(), self.matrix.columns(), |_| TYPE::zero());
|
|
NumericalMatrixImpl::<TYPE, HPivot, HLUDecomposition<TYPE>>::lu_invert(
|
|
&self.matrix,
|
|
&mut result,
|
|
&mut self.pivot.clone(),
|
|
);
|
|
result
|
|
}
|
|
|
|
fn pivot(&self, m: HMatrix<TYPE>) -> HMatrix<TYPE> {
|
|
&self.pivot * m
|
|
}
|
|
|
|
// fn p<'a>(&'a self) -> &'a HPivot {
|
|
// &self.pivot
|
|
// }
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use rand::rngs::StdRng;
|
|
use rand::RngCore;
|
|
use rand::SeedableRng;
|
|
|
|
use crate::NumericalMatrix;
|
|
use crate::Rational;
|
|
use crate::HMatrix;
|
|
use num_traits::Zero;
|
|
|
|
use rand;
|
|
|
|
#[test]
|
|
fn solve_linear_system() {
|
|
let mut rand = {
|
|
let seed = [
|
|
1,0,1,3,
|
|
2,5,0,0,
|
|
200,1,0,0,
|
|
210,30,0,0,
|
|
78,134,31,0,
|
|
253,11,7,0,
|
|
120,169,89,48,
|
|
200,0,202,0
|
|
];
|
|
StdRng::from_seed(seed)
|
|
};
|
|
let mtx = HMatrix::<Rational<i64>>::new(5, 5, |_| {
|
|
Rational::new(i64::try_from(rand.next_u32() % 40).unwrap() - 20, 1)
|
|
});
|
|
let b = HMatrix::<Rational<i64>>::new(5, 5, |_| {
|
|
Rational::new(i64::try_from(rand.next_u32() % 20).unwrap() - 10, 1)
|
|
});
|
|
let lu = mtx.clone().lu().unwrap();
|
|
let x = lu.solve(&b).unwrap();
|
|
assert!((mtx * x - b).is_zero());
|
|
}
|
|
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
mod test_big_int {
|
|
use num_traits::Zero;
|
|
use rand::rngs::StdRng;
|
|
use rand::RngCore;
|
|
use rand::SeedableRng;
|
|
|
|
use crate::NumericalMatrix;
|
|
use crate::Rational;
|
|
use crate::HMatrix;
|
|
|
|
use rand;
|
|
|
|
#[test]
|
|
fn solve_linear_system() {
|
|
use num_bigint::BigInt;
|
|
use num_traits::One;
|
|
|
|
let mut rand = {
|
|
let seed = [
|
|
1,0,1,3,
|
|
2,5,0,0,
|
|
200,1,0,0,
|
|
210,30,0,0,
|
|
78,134,31,0,
|
|
253,11,7,0,
|
|
120,169,89,48,
|
|
200,0,202,0
|
|
];
|
|
StdRng::from_seed(seed)
|
|
};
|
|
let mtx = HMatrix::<Rational<BigInt>>::new(10, 10, |_| {
|
|
Rational::new(BigInt::from(rand.next_u32() % 200) - 100, BigInt::one())
|
|
});
|
|
let b = HMatrix::<Rational<BigInt>>::new(10, 10, |_| {
|
|
Rational::new(BigInt::from(rand.next_u32() % 100) - 50, BigInt::one())
|
|
});
|
|
let lu = mtx.clone().lu().unwrap();
|
|
let x = lu.solve(&b).unwrap();
|
|
|
|
assert!((mtx * x - b).is_zero());
|
|
|
|
}
|
|
|
|
} |